Nanotopography-guided migration of T cells.
نویسندگان
چکیده
T cells navigate a wide variety of tissues and organs for immune surveillance and effector functions. Although nanoscale topographical structures of extracellular matrices and stromal/endothelial cell surfaces in local tissues may guide the migration of T cells, there has been little opportunity to study how nanoscale topographical features affect T cell migration. In this study, we systematically investigated mechanisms of nanotopography-guided migration of T cells using nanoscale ridge/groove surfaces. The velocity and directionality of T cells on these nanostructured surfaces were quantitatively assessed with and without confinement, which is a key property of three-dimensional interstitial tissue spaces for leukocyte motility. Depending on the confinement, T cells exhibited different mechanisms for nanotopography-guided migration. Without confinement, actin polymerization-driven leading edge protrusion was guided toward the direction of nanogrooves via integrin-mediated adhesion. In contrast, T cells under confinement appeared to migrate along the direction of nanogrooves purely by mechanical effects, and integrin-mediated adhesion was dispensable. Therefore, surface nanotopography may play a prominent role in generating migratory patterns for T cells. Because the majority of cells in periphery migrate along the topography of extracellular matrices with much lower motility than T cells, nanotopography-guided migration of T cells would be an important strategy to efficiently perform cell-mediated immune responses by increasing chances of encountering other cells within a given amount of time.
منابع مشابه
Migration of T Cells on Surfaces Containing Complex Nanotopography
T cells navigate complex microenvironments to initiate and modulate antigen-specific immune responses. While recent intravital microscopy study revealed that migration of T cells were guided by various tissue microstructures containing unique nanoscale topographical structures, the effects of complex nanotopographical structures on the migration of T cells have not been systematically studied. ...
متن کاملEngineering of a microfluidic cell culture platform embedded with nanoscale features.
Cells residing in a microenvironment interact with the extracellular matrix (ECM) and neighboring cells. The ECM built from biomacromolecules often includes nanotopography. Through the ECM, interstitial flows facilitate transport of nutrients and play an important role in tissue maintenance and pathobiology. To create a microenvironment that can incorporate both nanotopography and flow for stud...
متن کاملCellular Contact Guidance through Dynamic Sensing of Nanotopography
We investigate the effects of surface nanotopography on the migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Multiple prior studies have implicated the patterning of focal adhesions in contact guidance. However, we observe significant contact guidance of Dictyostelium along surfaces with nanoscale ridges or grooves, even though this organism lacks integrin-based adhesio...
متن کاملEffect of orientation and density of nanotopography in dermal wound healing.
We report on the effect of synthetic extracellular matrix (ECM) scaffold in the form of uniformly-spaced nanogrooved surfaces in dermal wound healing. The rate of wound coverage was measured on various nanotopographical densities with vertical or parallel orientation using nanogrooves of 550 nm width with three different gaps of 550, 1100, and 2750 nm (spacing ratio: 1:1, 1:2 and 1:5). Guided b...
متن کاملAligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells
Glioblastoma multiforme (GBM) is an aggressive, Grade IV astrocytoma with a poor survival rate, primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 189 5 شماره
صفحات -
تاریخ انتشار 2012